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Airport Resilience Assessment Using a Novel MCDM 

Model 

Abstract: 

Airports are one of the most important facilities in the transportation system of critical 

infrastructure. In the face of particular disasters, it is difficult to build a risk prediction model 

based on past statistical data. To strengthen the airport's resilience, it is feasible to develop 

protection strategies using the expert-based Multiple Criteria Decision Making (MCDM) 

approach. This study proposes a novel evaluation model that uses the Bayesian Best Worst 

Method (Bayesian BWM) to determine the optimal group weights for the criteria, and uses 

the modified Preference Ranking Organization Method for Enrichment Evaluations (modified 

PROMETHEE) to calculate the difference between each alternative and the aspiration level 

and then rank it. Taiwan’s airports were used to demonstrate the practicality and effectiveness 

of the model. In addition, the sensitivity analysis and the model comparisons also confirmed 

the reliability of the proposed model. The research results show that the proposed evaluation 

system effectively assists policy makers and airport security departments to formulate 

improvement strategies, thereby enhancing the resilience of airports. 
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1. Introduction 

 The reliability of critical infrastructure can significantly affect a country's economic and 

social development, and both developing and developed countries need to develop a 

comprehensive set of critical infrastructure protection policies (Palleti et al., 2018). There are 

numerous  cases of human errors, natural disasters, terrorist attacks, etc. that have caused 

critical infrastructure failures. Therefore, improving the protection capabilities of critical 

infrastructure is an important issue facing risk management today (Lo et al., 2020). Despite 

the efforts of governments and security organizations to reduce the damage caused by 

disasters to critical infrastructure, unprecedented special disasters and intentional human 

attacks are difficult to predict. However, it is effective to learn from past events as experience 

to develop relevant protection strategies to enhance the resilience of critical infrastructure 
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(Labaka et al., 2016; Slivkova et al., 2017). 

Critical infrastructure includes transportation systems, communication systems, financial 

systems, power systems, water systems, medical systems, government agencies, and so on. In 

view of the steady growth of people's needs to travel abroad, attention has been paid to the 

aspects such as service quality, security and administrative efficiency. Moreover, the ability of 

transportation systems to resist interference and adaptability has become increasingly 

important. Air transport is the fastest and most convenient means of transportation, and the 

infrastructure of air transport is "airport", which is the center of international transportation. 

Airport failures can cause serious problems, including restricted entry and exit, flight delays, 

and passengers’ panic. For example, in December 2017, Atlanta's Hartsfield-Jackson airport 

in the United States, known as the busiest airport in the world, suffered a power outage for 

nearly 11 hours due to an electrical fire in the tunnel below the airport. In addition to the 

frustration of airport operations, it also suffered a huge loss of compensation (Sun et al., 

2020). Therefore, runway maintenance planning, aircraft ground operation management, and 

ground emergency response measures are important tasks for airport maintenance. 

After the United States suffered a terrorist attack on September 11, 2001, many countries 

have actively proposed security management policies and counter-terrorism measures for 

airports (Ito and Lee, 2005). The National Academy of Sciences defines four aspects to 

reflect the resilience of the system: to plan and prepare for, to absorb, to respond to, and to 

recover from disasters. In air transport systems, resilience refers to the ability to prevent or 

mitigate any threat to air traffic operations (Clark et al., 2018). Security risk assessment 

usually uses cost-benefit analysis (CBA) to estimate the cost and protective benefits of 

security measures. However, Stewart and Mueller (2014) pointed out that the CBA analysis 

could not prove that the current estimated airport security costs are reasonable, and they 

acknowledged that more simulation experiments were needed to explore the interdependence 

existing in airport security. A reliability evaluation model for the mass transit network in the 

airport area was proposed by Malandri et al. (2017). Due to the high cost of flight delays 

caused by late arrivals, pilots may increase navigational risks in order to catch up with 

expected arrival times. Therefore, there must be multiple airport transportation options to 

improve this problem. According to Knol et al.’s (2018) literature review of airport security 

systems, the most common assessment factors are the likelihood, vulnerability, and 

consequences of the threat. They applied cognitive agent models to analyze the performance 
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of airport security inspections. Skorupski and Uchroński (2017) proposed a model for 

evaluating the performance of airport security checkpoints based on fuzzy inferences, and 

inferred airport security performance through expert interviews and questionnaires. Their 

model takes into account the efficiency of prohibited items detection, the ability of security 

control and service quality. Bao and Zhang (2018) developed a quantitative framework for 

large-scale airport resilience assessment to determine how vulnerability and adaptability 

affect airport system resilience. The results show that the efficiency of emergency handling 

interacts with airport vulnerability. Even when the airport is extremely vulnerable, it has 

certain self-regulation and resilience capabilities to reduce the risks. In the development trend 

of the Internet of Things, a risk assessment model for smart airport network security was 

proposed by Lykou et al. (2019). The purpose of this research is to actively mitigate 

malicious attacks and threats to ensure the robustness of the airport network system. In 

addition, there are many studies related to airport security protection (Yanjun et al., 2019; 

Zhou et al., 2019; Thompson and Tran, 2019), who have contributed to the safety assessment 

of global transportation systems. 

However, the resilience assessment framework for airports has not been comprehensively 

discussed. This is a complex and difficult Multiple Criteria Decision Making (MCDM) 

problem. It is the purpose of MCDM to seek an ideal solution under many constraints. This 

study defines airport resilience as "the ability of an airport to quickly and effectively absorb 

hazards and reduce impacts, and quickly return to normal conditions in the event of a crisis." 

Therefore, this study proposes an MCDM assessment framework for airport resilience. The 

dimensions are detection capability, resistance capability, rescue capability, and recovery 

capability, which contain a total of 27 criteria. These four dimensions correspond to the four 

aspects of the resilience assessment of critical infrastructure, namely "reduced failure 

probabilities," "reduced consequences from failures," "reduced time to recovery," and "the 

means of resourcefulness and redundancy” (Bruneau et al., 2003). This study uses the 

Bayesian Best Worst Method (Bayesian BWM) to determine the optimal group weights for 

the criteria. Bayesian BWM is a novel group decision analysis technique that overcomes the 

shortcomings of using conventional arithmetic to integrate experts’ opinions with statistical 

estimation methods (Mohammadi and Rezaei, 2019). Next, the modified Preference Ranking 

Organization Method for Enrichment Evaluations (modified PROMETHEE) technique is 

used to assess the resilience performance of the airport. The modified PROMETHEE 
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introduces the concept of aspiration level into conventional PROMETHEE. In the calculation 

process, the aspiration and the worst levels are considered as alternatives. This approach 

replaces the conventional concept of "relative satisfaction" with "aspiration level" It can be 

known how far the alternatives are from the aspiration level for improvement, so that more 

management information can be obtained in practical applications (Lo et al., 2019). This 

study provides a more systematic resilience assessment framework for airports and can assist 

policy makers in developing more appropriate protection strategies. 

The structure of this article is described below. Section 2 introduces the proposed evaluation 

dimensions and criteria, and explains their definitions and references. Section 3 describes the 

method used and its steps, including Bayesian BWM and modified PROMETHEE. Section 4 

uses the international airports in Taiwan as a case to demonstrate the feasibility and 

effectiveness of the proposed model. Section 5 discusses and illustrates future research 

directions. 

 

2. The Proposed Airport Resilience Assessment Framework 

Due to the particularity of disasters, the methods of risk vulnerability analysis are rarely 

reflected in operational concepts based on previous disaster data. Even if many disruptive 

events have been proven to have an impact on airport operations, it is difficult to have a 

complete study on how to prevent risks. Airport practitioners can obtain defense ability to 

prevent future uncertain risks by integrating past disaster events and the lessons learned. If 

these painful experiences and costs can be transformed into valuable knowledge systems, 

they can provide systematic preventive mechanisms and measures (Clark et al., 2018). 

The airport resilience assessment criteria involve many complex factors, and it is feasible to 

build a knowledge system through past disaster prevention experience. It may be difficult for 

such a complicated evaluation system to obtain accurate quantitative data. Therefore, an 

expert-based qualitative research survey was used in the study, with the survey results 

converted into computable quantitative data through soft calculation methods. And scientific 

conclusions are obtained for references by the disaster prevention departments (Liou et al., 

2007; Lo et al., 2020). Many academic studies on aviation and airport safety have proposed a 

number of resilience indexes, which have helped to develop an assessment framework for this 

paper (Yang et al., 2015; Humphries and Lee, 2015; Huizer, 2015; Skorupski and Uchroński, 

2016; Chen and Li, 2016; Zhao et al., 2017; Wallace and Webber, 2017; Zhou et al., 2018; 
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Birgani et al., 2018; Bao and Zhang, 2018; Willemsen and Cadee, 2018; Singh et al., 2019 

Ergün and Bülbül, 2019). 

The decision-making team was composed of a total of 23 members, including the aviation 

police station, airport security engineers, and disaster prevention specialists. Table 1 presents 

the years of service of all decision-making members, and it shows that they have deep 

experience working in airports and aviation safety related fields. 

 

Table 1. Background of the experts 

 Years of relevant experience Number of people 

International Airport  

Maintenance Department 

More than 10 years 5 

5-10 years 6 

Less than 5 years 2 

International Airport Safety 

Investigation Agency 

More than 10 years 2 

5-10 years 1 

Less than 5 years 2 

Aviation Police Bureau 

 

More than 10 years 2 

5-10 years 2 

Less than 5 years 1 

 

After reviewing the literature and discussing with the experts, four dimensions were 

developed to assess the airport's resilience and protection capabilities, including Detection 

capability before risks (D1), Resistance capability to risks when they occur (D2), Emergency 

measures and Rescue capability (D3), Recovery capability after risks (D4). These dimensions 

can be divided into 27 evaluation criteria, and the description and references of the criteria 

are presented in Table 2. The criteria proposed in this article are so comprehensive that they 

involve the assessment of airport physical facilities, personnel, equipment and tools, 

measures and methods, and take into account the complete cycle of risk occurrence (early, 

middle and late). 

Table 2. Proposed dimensions and criteria for airport resilience assessment 

Dimensions Criteria Reference 

Detection 

Capability (D1) 

Ground crews' safety awareness and risk 

alertness at work (C11). 

Zhao et al. (2017); Singh et al. (2019); 

Ergün and Bülbül (2019) 

 Periodic inspection of airport runways (C12). Zhao et al. (2017); Humphries and Lee 

(2015) 

 Accuracy of instrument and system testing at Zhao et al. (2017); Ergün and Bülbül 
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security checkpoints (C13). (2019); Skorupski and Uchroński (2016) 

 Safety Management System (SMS) system 

integrity (C14). 

Zhao et al. (2017); Chen and Li (2016); 

Ergün and Bülbül (2019) 

 Early warning accuracy and timeliness of 

aviation weather service stations (C15). 

Zhao et al. (2017); Chen and Li (2016) 

 Reliability of the airport's epidemic 

prevention system (C16). 

Huizer et al. (2015) 

 Integrity of airport security and surveillance 

systems (C17). 

Zhou et al. (2018); Yang et al. (2015); 

Ergün and Bülbül (2019) 

Resistance 

capability (D2) 

Emergency procedures when flammables and 

explosives are found (C21). 

Singh et al. (2019) 

 Ground crew education and training on 

airport safety (C22). 

Singh et al. (2019); Zhao et al. (2017); 

Ergün and Bülbül (2019) 

 Number of security personnel and aviation 

police (C23). 

Yang et al. (2015); Skorupski and 

Uchroński (2016) 

 Comprehensive physical drainage system 

(C24). 

Birgani et al. (2018) 

 Planning and management of tarmacs, 

number of collisions between vehicles, 

machinery and aircrafts (C25). 

Chen and Li (2016) 

 Building structures and earthquake prevention 

measures for terminals (C26). 

Singh et al. (2019) 

 Proper isolation measures around the airport 

(C27). 

Willemsen and Cadee (2018) 

Rescue 

capability (D3) 

Adequacy of fire protection resources inside 

and outside the terminals (C31). 

Zhao et al. (2017); Bao and Zhang (2018) 

 Stability of communication systems in 

various departments of the airport (C32). 

Zhao et al. (2017); Yang et al. (2015) 

 Comprehensive emergency evacuation 

measures and clear escape instructions (C33). 

Bao and Zhang (2018) 

 Emergency rescue mechanism for injured 

patients (C34). 

Yang et al. (2015); Wallace and Webber 

(2017) 

 Preparation of emergency plans and relief 

procedures (C35). 

Yang et al. (2015); Bao and Zhang (2018) 

 Medical resources surrounding the airport 

(C36). 

Zhou et al. (2018) 

Recovery Morale of all staff at the airport for Yang et al. (2015); Zhou et al. (2018)  
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capability (D4) post-disaster reconstruction (C41). 

 Cost of maintenance and reinforcement works 

for terminals (C42). 

Yang et al. (2015); Chen and Li (2016) 

 Establishment of a recovery command center 

to coordinate the allocation of people, 

materials, and resources (C43). 

Yang et al. (2015); Wallace and Webber 

(2017) 

 Timeliness of airport runway repair 

operations (C44). 

Humphries and Lee (2015) 

 Spare power generation equipment to ensure 

uninterrupted Information Technology (IT) 

System (C45). 

Yang et al. (2015); Wallace and Webber 

(2017) 

 Spare Management Information System 

(MIS) (C46). 

Yang et al. (2015); Wallace and Webber 

(2017) 

 Comprehensive maintenance equipment to 

quickly start repairs (C47). 

Zhao et al. (2017); Ergün and Bülbül 

(2019); 

 

3. Proposed Novel MCDM Model 

Figure 1 shows a hybrid model architecture for airport resilience assessment. The proposed 

model consists of two phases. First, according to the dimensions and criteria proposed in 

Section 2, Bayesian BWM is used to calculate their optimal weights and prioritize the criteria. 

Subsequently, the modified PROMETHEE technology is used to calculate the performance 

value of the alternatives (airports), and the management policies to improve airport resilience 

are proposed. The calculation process of the involved methods will be explained in detail 

below. 

 

(Figure 1 翻譯完再補上) 

 

3.1 Bayesian BWM technique 

BWM was proposed by Rezaei (2015). It overcomes two shortcomings of AHP, namely 

reducing the number of pairwise comparisons and improving consistency. BWM obtains two 

sets of vectors (Best-to-Others and Others-to-Worst vectors) through pairwise comparisons. 

This structured questionnaire design helps decision makers to provide more accurate 

assessments. However, BWM's way of integrating multiple experts is to use the simplest 

arithmetic mean. When the opinions of experts are divided, the averaged evaluation value has 
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been distorted. Therefore, Mohammadi and Rezaei (2019) developed a method to optimize 

BWM, called Bayesian BWM, which uses the concept of probability distribution to integrate 

group evaluation information to generate a set of optimal criterion group weights. MCDM 

requires that the sum of weights be 1 and that each weight be greater than or equal to 0. From 

the concept of probability, the criterion cj (j = 1, 2,…, n) can be regarded as a random event, 

and the generation of the weight wj is the possibility of the criterion cj occurring. Therefore, it 

is reasonable to construct a probabilistic model based on BWM. Bayesian BWM has been 

used in many areas to solve weight problems, including sports tourism (Yang et al., 2020), 

electrochemical (Guo, 2020), and manufacturing (Man et al., 2020). 

In this study, software provided by Mohammadi and Rezaei (2019) was used to perform 

Bayesian BWM operations. Bayesian BWM's brief steps and instructions are as follows: 

Step 1. Establishing evaluation criteria 

Discussion with experts through literature review to determine n evaluation criteria 

 1 2, , , j nc c c c  for airport resilience. 
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Step 2. Choosing the most important and least important criteria 

The most important (i.e., best, Bc ) and least important (i.e., worst, Wc ) criteria are chosen 

from n criteria. 

Step 3. Comparing the most important criterion with other criteria to obtain a BO vector 

Experts assess the importance of the most important criteria to other criteria. The evaluation 

scale is 1 to 9, and the scale 1 indicates that it is equally important. The scale 9 is far  more 

important. The larger the scale, the greater the relative importance. BO vector is expressed as: 

 1 2, , ,  , , Bj B B Bj BnA a a a a    

where Bja indicates the importance of the most important criterion B to criterion j. 

Step 4. Comparing the other criteria with the least important criterion to obtain the OW 

vector 

This step is similar to Step 3, where experts evaluate the importance of the other criteria and 

the least important criterion. The OW vector is expressed as: 

 1 2, , , , , 
T

jW W W jW nWA a a a a    

where jWa indicates the importance of the other criterion j to the least important criterion W. 

Since self-comparison is of equal importance,  therefore it is required that 1BBa   and 

1WWa  . 

Step 5. Obtaining the optimal group weights for the criteria 

The probability model of the multinomial distribution can be constructed by BjA and jWA , then 

the probability function of the multinomial distribution of jWA  is shown as Eq. 1. 

    1

1

1

!

!
jW

n

jW nj a
jW j jn j

jWj

a
P A w w

a













         (1) 

where jw  is the probability distribution of weights, which has a proportional relationship 
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with jWa , so Eq. 2 can be formed. The probability of the weight of the least important 

criterion Ww  is shown in Eq. 3. Eqs. 2 and 3 can be combined to obtain Eq. 4. 

 
1

jW
j n

jWj

a
w

a





, 1,2, ,j n             (2) 

 
1 1

1WW
W n n

jW jWj j

a
w

a a
 

 
 

           (3) 

 j
jW

W

w
a

w
 , 1,2, ,j n              (4) 

Besides, the probability of the weight of the most important criterion Bw  is shown in Eq. 5. 

 
1 1

1 1BB
n n

B Bj Bjj j

a

w a a
 

 
 

B
Bj

j

w
a

w
  , 1,2, ,j n        (5) 

Dirichlet probability distribution is used to construct a model to estimate the optimal weight 

value jw , with the probability function shown as Eq. 6. 

    
1

1

1
j

n

j jj
Dir w w

B






            (6) 

where   is the vector parameter, which is usually set to 1. 0jw   and 1jw   are 

required to be in line with the concept of MCDM. 

Bayesian BWM is a way of estimating approximate parameters through Bayesian, and 

considering the survey data of multiple experts to integrate a set of optimal group weights 

agg

jw . The steps are described as follows: 

Step 5.1. Constructing joint probability distribution for the team 

The decision-making team has k experts k = 1,2, ..., K, and the individual criterion weight 

after an expert evaluation is k

jw , and integrating all of k

jw  can get the group weights as agg

jw . 

1:K

BjA  and 1:K

jWA  represent the BO and OW vectors of the first expert to the K-th expert. These 

vectors can construct the joint probability distribution of group decision-making as shown in 

Eq. 7. 
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  1: 1: 1:, ,agg K K K

j j Bj jWP w w A A             (7) 

Step 5.2. Building a Bayesian hierarchy model 

Experts' individual optimal weights k

jw  depend on their BjA  and jWA  vectors, while the 

optimal group weights agg

jw  depend on k

jw . The Bayesian hierarchy model is constructed 

based on the iterative operation method, which means that the BjA  and jWA  vectors of the 

experts will generate k

jw , and the evaluation data of multiple experts will be added one after 

another, and the optimal weight agg

jw  of the group will be continuously updated. Considering 

that the conditions among variables are independent, the joint probability of the Bayesian 

model is shown as Eq. 8. 

      1: 1: 1: 1: 1: 1: 1:, , , , ,agg K K K K K agg K agg K

j j Bj jW Bj jW j j j jP w w A A P A A w w P w w     (8) 

Eq. 8 can be further deduced as follows. 

            1: 1: 1: 1:

1

, , ,
K

K K agg K agg K agg k k k k k agg
Bj jW j j j j j jW j Bj j j j

k

P A A w w P w w P w P A w P A w P w w


   

(9) 

Eq. 9 shows that by specifying the statistical distribution of each variable, the corresponding 

probability function can be found. k k

Bj jA w  and k k

jW jA w  are distributed as Eq. 10. 

 
1

~k k

B j k

j

A w multinomial
w

 
  
 

, 1,2, ,k K   ;        

  ~k k k

jW j jA w multinomial w , 1,2, ,k K           (10) 

And k

jw  under the condition of agg

jw  can be constructed as Dirichlet distribution as shown in 

Eq. 11. 

  ~k agg agg

j j jw w Dir w  , 1,2, ,k K           (11) 

where agg

jw  is the average value of the Dirichlet distribution, and   is a non-negative 
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parameter. 

The k

jw  must be in the proximity of agg

jw  since it is the mean of the distribution, the 

proximity is determined by the   parameter, and the distribution of the   parameter obeys 

the gamma distribution as shown in Eq. 12. 

  ~ ,gamma a b              (12) 

where a and b are the shape and scale parameters of the gamma distribution. 

The optimal group weights agg

jw  obey the Dirichlet distribution as shown in Eq. 13. 

  ~agg

jw Dir               (13) 

Where parameter   is set to 1. 

After the construction of probability distribution of all variables is completed, Markov-chain 

Monte Carlo (MCMC) technology is used to simulate q experiments to obtain the optimal 

group weights agg

jw . 

 

3.2 Modified PROMETHEE technique 

  

PROMETHEE technology is more rigorous than other MCDM performance evaluation 

methods. It has to perform multiple pairwise comparisons to obtain the integration score of 

alternatives (net flow). PROMETHEE's concept is to make pairwise comparisons between 

alternatives based on each criterion. The initial matrix is divided into the leaving flow and 

entering flow matrix. Although this operation is tedious, we can know the pros and cons of 

each alternative under each criterion. In this article, we have added the concept of "aspiration 

level" to PROMETHEE, so we know what is the gap between each alternative and the 

aspiration level in order to propose more reasonable improvements. Many studies have 

proven the reliability of PROMETHEE in practice (Bongo et al., 2018). The implementation 

steps of modified PROMETHEE are explained below. 

Step 1. Establishing initial decision matrix 

Experts weigh the performance of alternatives according to the established evaluation criteria. 

Assume that there are j criteria and i alternatives in the evaluation system, where j = 1, 2,..., n; 
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i = 1,2, ..., m. The experts judge the performance of the alternatives to give evaluation values 

on a scale of 1 (extremely poor performance) to 10 points (excellent performance). Higher 

scores indicate better performance. By averaging the evaluation values of all experts, an 

initial decision matrix A can be obtained, such as Eq. 14. 

11 12 1

21 22 2

1 2

n

n

m m mn m n

a a a

a a a

a a a


 
 
 
 
 
 

A





   



            (14) 

Step 2. Determining the aspiration and the worst levels for each criterion 

Previously, Positive and Negative ideals were formulated based on the maximum and 

minimum values of the performance of alternatives, as shown in Eqs. 15 and 16. In this way, 

only the ranking of the alternatives can be learned, but no real improvement space can be 

obtained. Therefore, this paper sets the evaluation scale maximum (10) and minimum (1) as 

the aspiration and the worst levels, as shown in Eqs. 17 and 18. In the execution of 

PROMETHEE's calculation procedure, the aspiration and the worst levels are not only the 

basis of normalization, but also considered as alternatives. In this way, each alternative can be 

determined depending on how much difference it is from the aspiration level, and then the 

effective improvement measures can be formulated. 

Positive ideal: * max 1,  2, ,  ;  1,  2, ,  .i iji
a a i m j n         (15) 

Negative ideal: min 1,  2, ,  ;  1,  2, ,  .i iji
a a i m j n          (16) 

After introducing the aspiration level concept to the PROMETHEE technology, the Positive 

and Negative ideals are changed from Eqs. 15 and 16 to Eqs. 17 and 18. 

The aspiration levels:  1 2,  , ,  =10asprie asprie asprie asprie

j na a a a        (17) 

The worst levels:  1 2,  , ,  =1worst worst worst worst

j na a a a         (18) 

Step 3. Calculating the normalized decision matrix 

PROMETHEE has six basic preference functions, proposed by Brans and Vincke (1985). 

This study uses Type V's preference function "Criterion with Linear Preference and 
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Indifference Area" as the normalized formula (called "Degree of Preference for All 

Alternatives for Each Criterion" in the PROMETHEE terminology). Through normalization, 

the range of all evaluation values can be converged between 0 and 1, and the unit of the 

criteria is unified. Eq. 19 is the normalization decision matrix, and the normalization formula 

used is Eq. 20. 

11 12 1

21 22 2

1 2

n

n

m m mn m n

f f f

f f f

f f f


 
 
 
 
 
 

F





   



           (19) 

where ij m n
f


   F

.  

    worst aspire worst

ij ij j j jf a a a a             (20) 

Step 4. Calculating the preference functions of the alternatives under each criterion 

We define a preference function  ,  jS u v to indicate the degree to which alternative u is 

better than alternative v under criterion j, as shown in Eq. 21. 

 
0            ,  

,   ,  

1             ,  otherwise

worst

uj vj j

worst aspire

j uj vj j uj vj j

f f f

S u v f f f f f f

 


    

         (21) 

where =1aspire

jf  and =0worst

jf . 
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Step 5. Generating multi-criteria preference index for each alternative 

Because there are quite a few of evaluation criteria and they are not equally important, this 

step combines the optimal weight wj of Bayesian BWM with the preference function 

 ,  jS u v  obtained in Step 4 to obtain a multi-criteria preference index  ,  u v . Where 

 ,  u v  index indicates the degree to which alternative u is superior to alternative v in 

overall performance, as shown in Eq. 22. 

   
1

,  ,  
n

j j
j

u v w u v 


             (22) 

Step 6. Obtaining net flow for all alternatives 

The pros and cons of all alternatives can be identified according to the multi-criteria 

preference index. We can calculate the three flows of the alternatives in order to rank, 

including leaving flow, entering flow, and net flow, which are shown in Eqs. 23–25. 

The leaving flow:    
1

,  
z

v

u u v 



          (23) 

The entering flow:    
1

,  
z

v

u v u 



          (24) 

The net flow:      u u u               (25) 

where z represents the total number of times that alternative u is compared with alternative v. 

Assume  there are 3 alternatives, z is 2(n-1) times. The larger the net flow of the alternative, 

the better, because it means that the alternative has a better performance than the others. 

  

4. Empirical Research on Airport Resilience Evaluation 

4.1 Case description 

This study uses Taiwan as a case, evaluating Taiwan's airports' ability to respond to and 

recover from disasters when it faces them. The decision-making team reviewed the risk 

events that damaged the operations of Taiwan's airports in the past ten years, including floods, 

malfunctions of machinery and equipment, terrorist attacks, epidemics, and strikes. Taiwan's 

geographical position is special, for it is an island surrounded by the sea. There are 

earthquakes all year round and typhoons frequently coming in summer. Most people enter 
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and leave the country relying on the air transport system (Lo et al., 2020). In Section 2, we 

have established a framework for airport resilience assessment, which includes dimensions of 

detection capability (D1), resistance capability (D2), rescue capability (D3), and recovery 

capability (D4), as well as 27 criteria (C11 to C47) that are classified under them. First, 

experts must think carefully about how important these criteria are to airport resilience 

assessment, that is, weight determination. Then, the experts evaluated the performance of 

alternatives according to the definition of the criteria, and then obtained the ranking and the 

management implications for improvement planning. 

Based on the Taiwan government's classification standards for airports, the decision-making 

team decided to evaluate the alternatives for Class A+ and Class A airports, including Taipei 

Airport (A1), Taoyuan Airport (A2), and Kaohsiung Airport (A3). (Class A+ airport: more 

than 10 million passengers or more than 50,000 flights per year. Class A airport: more than 4 

million passengers or more than 40,000 flights per year.) Relevant information for each 

alternative is shown in Table 3. 

 

Table 3. Basic information of three international airports in Taiwan 

Airport 
IATA 

code 

ICAO 

code 
City Class Passenger flow in 2019 

Taipei International 

Airport (A1) 
TSA RCSS Taipei Class A 6,350,353 passengers 

Taoyuan International 

Airport (A2) 
TPE RCTP Taoyuan Class A+ 48,689,372 passengers 

Kaohsiung International 

Airport (A3) 
KHH RCKH Kaohsiung Class A 7,506,753 passengers 

 

According to Table 3, the alternatives are Taiwan's three major airports. They urgently need 

to have resilience to maintain the stability of people's entry and exit. It is hoped that by 

constructing a disaster resilience assessment method suitable for Taiwan, it will serve as a 

guide and thus assist other airports in improving resilience research. Next, the actual survey 

data and its calculation procedures are introduced. 

 

4.2. Calculating criteria group weights with Bayesian BWM 

Each expert performs 5 Bayesian BWM calculations, including the dimensions themselves 
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and the criteria under the 4 dimensions. In terms of dimensions, experts were asked to 

compare the most important dimensions they judged with other dimensions to obtain BO 

vectors, as shown in Table A1. For example, Expert 1 believes that the most important 

dimension is D1, which is about three times more important than D2. And the other 

dimensions can also be evaluated in the same way. Similarly, the evaluation values of other 

dimensions compared to the least important dimension can constitute OW vectors, as shown 

in Table A2. Tables A1 and A2 include the evaluation information of the 23 experts. 

According to the calculation procedure introduced in Section 3.1, the optimal criteria group 

weights can be obtained, as shown in Table 4. 

All BWM questionnaires must conduct  a consistent test to ensure the logic and rationality of 

the experts in the process of filling out the questionnaires. The consistency ratio (CR) for any 

questionnaire is less than 0.03, and the average CR of the 23 questionnaires is 0.0118, 

indicating that the result of the questionnaires is reliable (Rezaei, 2015). According to the 

results in Table 4, the weight of resistance capability (D2) is 0.377, so it is the most important 

dimension. In addition, Periodic inspection of airport runways (C12), Proper isolation 

measures around the airport (C27), Preparation of emergency plans and relief procedures (C35), 

and Establishment of a recovery command center to coordinate the allocation of people, 

materials, and resources (C43) are the most important criteria in each dimension. In terms of the 

overall system, the top five criteria are Proper isolation measures around the airport (C27)   

Preparation of emergency plans and relief procedures (C35) Number of security personnel 

and aviation police (C23) Ground crew education and training on airport safety (C22)   

Emergency procedures when flammables and explosives are found (C21). 

 

Table 4. Weighted results of Bayesian BWM calculation 

Dimensions Local 

weight 

Ranking Criteria Local 

weight 

Ranking Global 

weight 

Ranking 

D1 0.258 2 C11 0.178 3 0.046 9 

   C12 0.180 1 0.046 6 

   C13 0.151 4 0.039 12 

   C14 0.179 2 0.046 7 

   C15 0.107 6 0.028 18 

   C16 0.088 7 0.023 21 

   C17 0.117 5 0.030 16 

D2 0.377 1 C21 0.157 4 0.059 5 
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   C22 0.159 3 0.060 4 

   C23 0.165 2 0.062 3 

   C24 0.109 7 0.041 11 

   C25 0.121 6 0.046 10 

   C26 0.122 5 0.046 8 

   C27 0.169 1 0.064 1 

D3 0.204 3 C31 0.180 2 0.037 13 

   C32 0.146 4 0.030 17 

   C33 0.153 3 0.031 15 

   C34 0.101 6 0.021 23 

   C35 0.311 1 0.064 2 

   C36 0.109 5 0.022 22 

D4 0.161 4 C41 0.143 3 0.023 20 

   C42 0.118 7 0.019 27 

   C43 0.216 1 0.035 14 

   C44 0.127 4 0.020 24 

   C45 0.151 2 0.024 19 

   C46 0.123 5 0.020 25 

   C47 0.122 6 0.020 26 

 

  

In order to check whether  the optimal group weights obtained and their ranking are reliable, 

Bayesian BWM provides a confidence test for ranking. Taking dimensions as an example, as 

shown in Figure 2, there is 90.87% of confidence that D1 is more important than D3. The 

average ranking confidence of the overall evaluation system is 87.58%, indicating that the 

criteria ranking has a high degree of confidence. Next, we apply modified PROMETHEE to 

integrate the performance values of the alternatives. 
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Figure 2. Confidence in ranking dimensions 

 

 

4.3. Using modified PROMETHEE to calculate airport resilience performance 

Assessing airport resilience is a complex and difficult task. In the face of unpredictable risks, 

it is difficult to establish perfect protection measures. Improvement strategies can only be 

formulated through past failure experiences. This research is a qualitative survey based on 

expert knowledge. The interview results are converted into computable data. PROMETHEE 

is effective in processing this type of data. Table A3 presents the average survey opinion of 

23 experts. For example, the performance of Taipei International Airport (A1) in criterion C11 

(ground staff's safety awareness and risk alertness at work) is rated 5.739. In the table, 

Planning and management of tarmacs, number of collisions between vehicles, machinery and 

aircrafts (C25) and Cost of maintenance and reinforcement works for terminals (C42) are 

“expected to be small” indicators (the smaller the evaluation values, the better), then the 

aspiration level is 1. By substituting the data of Table A3 into the modified PROMETHEE 

calculation procedure introduced in Section 3.2, the leaving, entering and net flows of each 

alternative can be obtained. The preference function of the alternative solution can be found 

in Table 5. For example, the multi-criteria preference index of A1 toward A2 is 0.010, which 

is expressed as  1 2,  0.010A A  . All alternatives are unlikely to be better than the 

aspiration level, then  ,  0aspireu A  , and conversely, the worst level is also not better than 

any alternative, then  ,  0worstA v  . The rows and columns of the multi-criteria preference 
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index  ,  u v are summed separately to obtain the leaving flow  u  and the entering flow 

 u   of the alternative. With the same concept, the aspiration level will not have the 

entering flow, therefore,   0aspireA   . On the contrary, the worst level will not have the 

leaving flow, therefore,   0worstA   . 

 

Table 5. Multi-criteria preference index for each alternative 

A1 A2 A3 aspireA  worstA  Leaving flow

A1 - 0.010  0.010  0 0.550  0.571  

A2 0.022  - 0.025  0 0.562  0.609  

A3 0.004  0.007  - 0 0.544  0.554  

Aspire 0.450  0.438  0.456  - 1.000  2.344  

Worst 0  0 0 0 - 0 

Entering flow 0.475  0.455  0.491  0 2.656  

  

Table 6 presents the net flow and the ranking of all alternatives, A2A1A3. It is worth 

noting that the leaving flow of all alternatives is equal to the entering flow of all alternatives. 

It can be seen here that the performance of the three airports is better than the average 

(   0u  ). Conventional PROMETHEE can only help understand the relative difference 

among the alternatives, but cannot advance  effective suggestions for improvement. Through 

the modified PROMETHEE the gap between each airport and the aspiration level is known. 

Even though A2 is the first-ranked airport, the overall evaluation performance is still 2.19 

(2.344-0.154 = 2.19) units behind the aspiration level, indicating that there is still much room 

for improvement. Conventional PROMETHEE will consider A2 as the expected value, and 

such a concept will cause decision makers to think that A2 does not need improvement. The 

model proposed in this paper can overcome the above disadvantages and provide more 

reliable management implications. 

 

 

Table 6. Analysis results of PROMETHEE 

A1 A2 A3 aspireA  worstA  
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Leaving flow 0.571  0.609  0.554  2.344  0.000  

Entering flow 0.475  0.455  0.491  0.000  2.657  

Net flow 0.096  0.154  0.063  2.344  -2.657  

Ranking 2  1  3  

 

4.4 Management implications and discussion 

All the countries invest huge sums of money to strengthen risk management capabilities for 

critical infrastructure. However, air transport is the most important transportation system for 

Taiwanese people to enter and exit, and its resilience assessment is an important and difficult 

task. In order to improve the protection ability against unknown disasters, many airport 

resilience assessment models have been continuously proposed. We propose an MCDM 

model based on expert knowledge and use some soft calculation tools to transform qualitative 

surveys into quantifiable data that can be calculated. 

After interviewing 23 professional aviation safety experts, Bayesian BWM and modified 

PROMETHEE were used to analyze and discuss the implications of management, as 

described below: 

(i) First, the results of Bayesian BWM's analysis echo many studies. Proper isolation around 

the airport (C27) is the most important criterion. In order to ensure the safety of the airport 

area, many airports are equipped with electronic equipment to support the outside fence to 

fully grasp the movements of people, vehicles and aircrafts in the control area. In addition, 

boarding corridors are equipped with thermal cameras to monitor and identify images within 

3 kilometers. Today's security protection technology should be combined with electronic 

technology to replace manual patrolling and surveillance at any time to improve security 

protection efficiency (Willemsen and Cadee, 2018). 

(ii) Second, Preparation of emergency plans and relief procedures (C35) is the second most 

important criterion. Standard operating procedures (SOPs) for prioritizing incidents and 

disasters must be properly established to reduce the lead time for emergency response. The 

planning of this standard must be formulated in conjunction with relevant authorities such as 

the Airport Operation Control Center, the Airscle management department, and the Aviation 

Police Bureau (Yang et al., 2015; Bao and Zhang, 2018). In addition, the resistance capability 

at the time when airport risks occur has always been the concern of Taiwan’s disaster 

prevention departments. Manpower establishment, education and training planning, and 

special skills training are all key items for resilience assessment. These all reflect the 
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importance of criteria C21, C22 and C23. (Skorupski and Uchroński, 2016; Zhao et al., 2017; 

Ergün and Bülbül, 2019; Singh et al. 2019). 

(iii) Finally, according to the results of Table 6's modified PROMETHEE, Taoyuan 

International Airport (A2) is a more resilient airport in Taiwan. With the development trend of 

intelligence and automation, Taoyuan Airport has proposed many safety system update plans, 

including the integration of new and old equipment, the improvement of monitoring 

equipment, and the introduction of the Internet of Things. For Taipei International Airport (A1) 

and Kaohsiung International Airport (A3), Taoyuan International Airport (A2) is their 

benchmark. For all the alternatives, how much room there is for improvement can be known 

based on their distance from the aspiration levels, and further  improvements towards the 

aspiration levels can be achieved. 

More management implications can also be explored based on the analysis results of this 

study, and each alternative should be improved sequentially in accordance with the criteria 

with the greatest weight. The improvement suggestions put forward are not limited to Taiwan 

and can be used as a reference for all the international airports around the world to develop a 

more suitable resilience assessment model. 
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5. Sensitivity Analysis and Model Comparison 

Sensitivity analysis can be used to understand whether the results of the assessment will 

differ due to changes in a certain variable. In MCDM, criterion weight is a conditional 

variable for the evaluation of the system. According to the weight results presented in Section 

4.2, D2 has the highest weight, and 4 criteria (C21, C22, C23 and C27) under this dimension are 

included in the top 5 rankings. Therefore, we need to understand whether changes in D2 will 

significantly affect the results of the overall analysis. The weight of D2 was adjusted from 0.1 

to 0.9, and the other dimensions were adjusted in equal proportions. The total weight of each 

run is required to be equal to 1, as shown in Table 7. The sensitivity analysis of the modified 

PROMETHEE was performed 9 runs by the weight combination of Table 7, and the ranking 

results of the alternatives are shown in Table 8. The alternatives for Run 1 to Run 9 remain 

A2A1A3. Obviously, although D2 is determined as an important dimension, it will not 

affect the ranking because of its weight change, indicating that the proposed hybrid model is 

robust. 

 

 

Table 7. Dimensional weight allocation for 9 runs of sensitivity analyses 

Bayesian BWM Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9

D1 0.258  0.373  0.331 0.290 0.248 0.207 0.166 0.124  0.083  0.041 

D2 0.377  0.1  0.2 0.3 0.4 0.5 0.6 0.7  0.8  0.9 

D3 0.204  0.295  0.262 0.230 0.197 0.164 0.131 0.098  0.066  0.033 

D4 0.161  0.232  0.206 0.181 0.155 0.129 0.103 0.077  0.052  0.026 

 

Table 8. Ranking results after 9 runs of sensitivity analysis 

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 

A1 2 2 2 2 2 2 2 2 2 

A2 1 1 1 1 1 1 1 1 1 

A3 3 3 3 3 3 3 3 3 3 

 

Furthermore, this study also compares Bayesian BWM with other MCDM methods, 

including Simple Additive Weighting (SAW), Technique for Order Performance by Similarity 

to Ideal Solution (TOPSIS), VIsekriterijumska optimizacija i KOmpromisno Resenje 

(VIKOR) , Weighted Aggregated Sum Product Assessment (WASPAS) and Complex 



24 

 

Proportional Assessment (COPRAS). These methodologies are popular methods for MCDM 

integration alternative performance and ranking. The results of the model comparisons are 

shown in Table 9, and our proposed hybrid model is consistent with the alternative ranking 

results obtained by other models. However, the modified PROMETHEE calculation 

procedure is more rigorous. It makes  alternative comparisons under each criterion making 

pairwise comparisons in order to obtain the overall net flows and learn about the gap from the 

aspiration level. 

 

 

Table 9. Ranking results of the other five methods 

SAW TOPSIS VIKOR WASPAS COPRAS Our method 

A1 2 2 2 2 2 2 

A2 1 1 1 1 1 1 

A3 3 3 3 3 3 3 

 

5. Conclusions 

This study proposes a novel MCDM model to implement airport risk protection and analysis, 

which overcomes the limitations of CBA, which previously only took  cost into 

consideration. However, the occurrence of each risk is unique, and it is difficult to infer future 

disaster occurrences based on past statistics. The experience brought by past accidents or 

disasters can be transformed into valuable knowledge, which is often recorded as an expert's 

experience and documentation. Therefore, the methodology proposed in this study can 

systematically analyze experts’ opinions. We have shown that Bayesian BWM can effectively 

determine criterion weights, especially useful in a multi-expert decision-making environment. 

The method also provides a test of the confidence of the criterion ranking to determine that 

the weights generated are reliable. Conventional PROMETHEE takes the existing relatively 

good performance value as the ideal solution, ignoring the potential for improvement. The 

modified PROMETHEE technology incorporates the concept of aspiration level to obtain the 

gap between alternatives and benchmarks, and prioritizes each airport. In addition, the 

sensitivity analysis and comparison of the models show that the proposed model is robust and 

practical. 

The four dimensions, detection capability before the risk, resistance capability when risks 
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occur, emergency measures and rescue capability for the risks, and recovery capability after 

the risk, constitute the airport resilience assessment system. The framework is novel and 

comprehensive, and it echoes the four dimensions of critical infrastructure resilience. We 

used the top three airports in Taiwan to demonstrate the analysis process, and the results of 

the analysis were submitted to the relevant airport security departments. They demonstrates  

that not only this study met their expectations, but also they gained more potential knowledge 

and information, which would help formulate a more useful improvement strategies in the 

future. 

Although this study has made innovations and contributions to airport resilience assessment, 

there are other studies that can be extended. For example, combining the Decision-Making 

Trial and Evaluation Laboratory (DEMATEL) technique to consider the mutual influential 

relationships among the criteria, and combining fuzzy theory to adapt to the uncertainty of 

the evaluation environment. 

 

  

Appendix A.  

Table A1 BO vectors 

Best D1 D2 D3 D4 

Expert 1 D1 1 3 5 7 

Expert 2 D1 1 5 2 3 

Expert 3 D3 5 8 1 5 

Expert 4 D1 1 2 3 6 

Expert 5 D4 7 9 5 1 

Expert 6 D2 9 1 3 6 

Expert 7 D2 5 1 2 4 

Expert 8 D2 2 1 5 3 

Expert 9 D2 4 1 3 7 

Expert 10 D2 7 1 9 8 

Expert 11 D2 9 1 5 7 

Expert 12 D2 4 1 8 6 

Expert 13 D2 2 1 1 2 

Expert 14 D2 4 1 9 5 

Expert 15 D2 2 1 3 4 

Expert 16 D1 1 5 7 9 
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Best D1 D2 D3 D4 

Expert 17 D2 5 1 7 9 

Expert 18 D2 3 1 2 4 

Expert 19 D1 1 2 5 7 

Expert 20 D2 3 1 4 8 

Expert 21 D1 1 2 3 9 

Expert 22 D1 1 3 5 7 

Expert 23 D2 5 1 7 3 

 

Table A2. OW vectors after transposition 

OW Worst D1 D2 D3 D4 

Expert 1 D4 7 3 2 1 

Expert 2 D2 5 1 3 2 

Expert 3 D2 2 1 8 2 

Expert 4 D4 6 5 3 1 

Expert 5 D2 2 1 2 9 

Expert 6 D1 1 9 5 2 

Expert 7 D1 1 5 4 2 

Expert 8 D3 4 5 1 3 

Expert 9 D4 2 7 3 1 

Expert 10 D3 2 9 1 1 

Expert 11 D1 1 9 3 2 

Expert 12 D3 3 8 1 2 

Expert 13 D4 1 2 2 1 

Expert 14 D3 3 9 1 2 

Expert 15 D4 3 4 2 1 

Expert 16 D4 9 3 2 1 

Expert 17 D4 2 9 2 1 

Expert 18 D4 2 4 3 1 

Expert 19 D4 7 4 2 1 

Expert 20 D4 3 8 2 1 

Expert 21 D4 9 5 4 1 

Expert 22 D4 7 4 2 1 

Expert 23 D3 2 7 1 3 

 

Table A3. Average decision matrix for 23 experts 
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A1 A2 A3 Aspiration Level Worst Level 

C11 5.739 5.522 5.391 10 1 

C12 5.870 5.739 6.000 10 1 

C13 5.565 5.826 5.696 10 1 

C14 5.696 5.913 5.478 10 1 

C15 6.391 6.435 6.217 10 1 

C16 5.913 6.609 5.913 10 1 

C17 5.957 6.391 5.783 10 1 

C21 5.565 5.956 5.609 10 1 

C22 5.609 5.522 5.609 10 1 

C23 5.522 5.696 5.522 10 1 

C24 6.391 6.044 6.000 10 1 

C25 3.174 4.174 3.304 1 10 

C26 6.000 6.261 6.174 10 1 

C27 5.826 5.826 5.739 10 1 

C31 6.000 6.609 5.957 10 1 

C32 5.565 5.652 5.565 10 1 

C33 5.783 6.174 5.956 10 1 

C34 5.783 6.000 5.957 10 1 

C35 5.957 6.261 5.913 10 1 

C36 6.261 6.348 5.913 10 1 

C41 5.957 5.913 5.783 10 1 

C42 4.130 2.652 4.087 1 10 

C43 6.000 5.870 5.957 10 1 

C44 6.043 5.826 5.913 10 1 

C45 5.870 5.913 5.652 10 1 

C46 5.783 5.957 5.783 10 1 

C47 5.913 6.130 5.870 10 1 
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